By Topic

Low stress PECVD amorphous silicon carbide for MEMS applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Avram, M. ; Nat. Inst. for R&D in Microtechnol., Bucharest, Romania ; Avram, A. ; Bragaru, A. ; Bangtao Chen
more authors

In this work we present a characterization of PECVD (plasma-enhanced chemical vapour deposition) amorphous silicon carbide films for MEMS/BioMEMS applications. For this applications a high deposition rate and a controllable value of the residual stress is required. The influence of the main parameters is analyzed. Due to annealing effect, the temperature can decrease the compressive value of the stress. The RF frequency mode presents a major influence on residual stress: in low frequency mode a relatively high compressive stress is achieved due to ion bombardment and, as a result, densification of the layer achieved. The PECVD amorphous silicon carbide layers presents a low etching rate in alkaline solutions (around 13 A/min in KOH 30% at 80°C) while in HF 49% the layer is practically inert. Amorphous silicon carbide can be used as masking layer for dry etching in XeF2 reactors (etching rate of 7 A/min). Finally, applications of PECVD amorphous silicon carbide layers for MEMS/BioMEMS applications are presented.

Published in:

Semiconductor Conference (CAS), 2010 International  (Volume:01 )

Date of Conference:

11-13 Oct. 2010