By Topic

Solving constraint satisfaction problems by a genetic algorithm adopting viral infection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kanoh, H. ; Inst. of Inf. Sci. & Electron., Tsukuba Univ., Ibaraki, Japan ; Hasegawa, K. ; Matsumoto, M. ; Nishihara, S.
more authors

Several approximate algorithms have been reported to solve large constraint satisfaction problems (CSPs) in a practical time. While these papers discuss techniques to escape from local optima, the present paper describes a method that actively performs global search. The present method is to improve the rate of search of genetic algorithms using viral infection instead of mutation. The partial solutions of a CSP are considered to be viruses and a population of viruses is created as well as a population of candidate solutions. Search for a solution is conducted by crossover infection substitutes the gene of a virus for the locus decided by the virus. Experimental results using randomly generated CSPs prove that the proposed method is faster than a usual genetic algorithm in finding a solution when the constraint density of a CSP is low

Published in:

Intelligence and Systems, 1996., IEEE International Joint Symposia on

Date of Conference:

4-5 Nov 1996