Cart (Loading....) | Create Account
Close category search window
 

Approaches and databases for online calibration of binaural sound localization for robotic heads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Finger, H. ; Inst. of Neuroinf., Univ. of Zurich, Zurich, Switzerland ; Shih-Chii Liu ; Ruvolo, P. ; Movellan, Javier R.

In this paper, we evaluate adaptive sound localization algorithms for robotic heads. To this end we built a 3 degree-of-freedom head with two microphones encased in artificial pinnae (outer ears). The geometry of the head and pinnae induce temporal differences in the sound recorded at each microphone. These differences change with the frequency of the sound, location of the sound, and orientation of the robot in a complex manner. To learn the relationship between these auditory differences and the location of a sound source, we applied machine learning methods to a database of different audio source locations and robot head orientations. Our approach achieves a mean error of 2.5 degrees for azimuth and 11 degrees for elevation for estimating the position of an audio source. The impressive results highlight the benefits of a two-stage regression model to make use of the properties of the artificial pinnae for elevation estimation. In this work, the algorithms were trained using ground truth data provided by a motion capture system. We are currently generalizing the approach so that the training signal is provided online based on a real-time face detection and speech detection system.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.