By Topic

Water/air performance analysis of a fluidic muscle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Focchi, M. ; Adv. Robot. (ADVR) Dept., Italian Inst. of Technol., Genoa, Italy ; Guglielmino, E. ; Semini, C. ; Parmiggiani, A.
more authors

This paper deals with a comparative study on using water and air as actuation means for the control of a fluidic muscle (designed for air) and assesses the performance, particularly from a dynamic and energetic point of view. A medium with higher bulk modulus such as oil/water is believed to increase pressure and force bandwidths and reduce sensitivity to load variations, as is the case with conventional hydraulic stiff actuation systems. However in this application the inherent flexibility of the muscle plays a major role. Water has been chosen because of its non-flammability, environmental friendliness and the low solubility of air in it. The operating pressure range of the pneumatic muscle is 0-6 bar (typical range of a pneumatic system) that is well below typical operating pressures of hydraulic systems (typically over 100 bar). At such low pressures the dynamic behaviour of water is less predictable because of the higher likelihood of entrapped air in the water which physically occurs when operating at low pressures. This can majorly affect water bulk modulus and hence its dynamic performance. Therefore, the behaviour of the system in this unconventional pressure range for a liquid must be more thoroughly investigated. Theoretical and experimental analyses on a dedicated test rig have been carried out to assess these assumptions.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010