By Topic

Self-supervised learning method for unstructured road detection using Fuzzy Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shengyan Zhou ; Intell. Vehicle Res. Center, Beijing Inst. of Technol., Beijing, China ; Iagnemma, K.

Road detection is a crucial problem in the application of autonomous vehicle and on-road mobile robot. Most of the recent methods only achieve reliable results in some particular well-arranged environments. In this paper, we describe a road detection algorithm for front-view monocular camera using road probabilistic distribution model (RPDM) and online learning method. The primary contribution of this paper is that the combination of dynamical RPDM and Fuzzy Support Vector Machines (FSVMs) makes the algorithm being capable of self-supervised learning and optimized learning from the inheritance of previous result. The secondary contribution of this paper is that the proposed algorithm uses road geometrical assumption to extract assumption based misclassified points and retrains itself online which makes it easier to find potential misclassified points. Those points take an important role in online retraining the classifier which makes the algorithm adaptive to environment changing.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010