By Topic

Energetics of flapping-wing robotic insects: towards autonomous hovering flight

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karpelson, Michael ; Sch. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; Whitney, J.P. ; Gu-Yeon Wei ; Wood, R.J.

Flapping-wing mechanisms inspired by biological insects have the potential to enable a new class of small, highly maneuverable aerial robots with hovering capabilities. In order for such devices to operate without an external power source, it is necessary to address a complex system design challenge: the integration of all of the required components on board the robot. This paper discusses the flight energetics of flapping-wing robotic insects with the goal of selecting design parameters that enable power autonomy and maximize flight time. The subsystems of the robot are analyzed both from a broad perspective and using a detailed set of models for a piezoelectrically driven two-wing design. The models are used to perform a system-level optimization for the maximum flight time permitted by current technology, compare the resulting robot configurations to biological insects across several key metrics, and discuss the effect of performance gains in various subsystems of the robot.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010