By Topic

Parallel implementation of the N-FINDR endmember extraction algorithm on commodity graphics processing units

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanchez, S. ; Dept. of Technol. of Comput. & Commun., Univ. of Extremadura, Caceres, Spain ; Martín, G. ; Plaza, A.

Endmember extraction is an important technique in the context of spectral unmixing of remotely sensed hyperspectral data. Winter's N-FINDR algorithm is one of the most widely used and successfully applied methods for endmember extraction from remotely sensed hyperspectral images. Depending on the dimensionality of the hyperspectral data, the algorithm can be time consuming. In this paper, we propose a new parallel implementation of the N-FINDR algorithm. The proposed implementation is quantitatively assessed in terms of both endmember extraction accuracy and parallel efficiency, using two different generations of commercial graphical processing units (GPUs) from NVidia. Our experimental results indicate that the parallel implementation performs better with latest-generation GPUs, thus taking advantage of the increased processing power of such units.

Published in:

Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International

Date of Conference:

25-30 July 2010