By Topic

A robotic concept for remote maintenance operations: A robust 3D object detection and pose estimation method and a novel robot tool

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Transeth, A.A. ; Dept. of Appl. Cybern., SINTEF ICT, Trondheim, Norway ; Skotheim, O. ; Schumann-Olsen, H. ; Johansen, G.
more authors

Future normally-unmanned oil platforms offer potentially significantly lower commissioning and operation costs than their current manned counterparts. The ability to initiate and perform remote inspection and maintenance (I&M) operations is crucial for maintaining such platforms. This paper presents a system solution, including key components such as a 3D robot vision system, a robot tool and a control architecture for remote I&M operations on processes similar to those on topside oil platforms. In particular, a case study on how to automatically replace a battery in a wireless process sensor is investigated. A novel robot tool for removing and re-attaching the sensor lid has been designed. Moreover, a robot control architecture for remote control of industrial-type robot manipulators is presented. A 3D robot vision system for localizing the sensor lid and the battery has been developed. The system utilizes structured light, using an off-the-shelf projector and a standard machine vision camera. A novel, robust and fast vision algorithm called 3D-MaMa has been adapted to work for object localization and pose estimation in complex scenes, in our case the process equipment in our lab facility. Experimental results from our lab facility are presented which describe a series of battery replacement operations for various unknown positions of the wireless sensor, and we report on accuracies and success ratios. The experiments demonstrate that the described vision system is able to recover the full pose and orientation of an object, and that the results are directly applicable for controlling advanced robot contact operations. Moreover, the custom-built lid operation tool demonstrates successful results.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010