By Topic

Real-time level set based tracking with appearance model using Rao-Blackwellized particle filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Du Yong Kim ; Sch. of Inf. & Mechatron., Gwangju Inst. of Sci. & Technol., Gwangju, South Korea ; Ehwa Yang ; Moongu Jeon ; Shin, V.

In this paper, a computationally efficient algorithm for level set based tracking is suggested for near real-time implementation. The problem of computational complexity in level set based tracking is tackled by combining a sparse field level set method (SFLSM) with a Rao-Blackwellized particle filter (RBPF). Under the RBPF framework, affine motion is estimated using an appearance-based particle filtering (PF) to provide the initial curves for SFLSM and the local deformation of contours is analytically estimated through SFLSM. SFLSM is adopted to significantly reduce the computational complexity of the level set method (LSM) implementation. For the initial curve estimation in SFLSM, the estimated position and object scale are provided by the appearance-based PF in order to achieve the desired efficiency. Furthermore, the appearance-based PF alleviates inaccurate segmentation incurred by an incorrect initial curve. Experimental results with a real-video confirm the promising performance of this method.

Published in:

Image Processing (ICIP), 2010 17th IEEE International Conference on

Date of Conference:

26-29 Sept. 2010