By Topic

Sensor data fusion using fuzzy control for VOR-based vision tracking system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Hyun-il Kwon ; Autom. & Syst. Res. Inst., Seoul Nat. Univ., Seoul, South Korea ; Jaehong Park ; Wonsang Hwang ; Jong-hyeon Kim
more authors

This paper presents a vision tracking system to achieve high recognition performance under dynamic circumstances, using a fuzzy logic controller. The main concept of the proposed system is based on the vestibulo-ocular reflex (VOR) and the opto-kinetic reflex (OKR) of the human eye. To realize the VOR concept, MEMS inertial sensors and encoders are used for robot motion detection. This concept turns the camera towards a selected target, counteracting the robot motion. Based on the OKR concept, the targeting errors are periodically compensated, using vision information. The fuzzy logic controller uses sensor data fusion to detect slip or collision occurrences. To calculate a heading angle of the camera accurately, the output of the fuzzy logic controller and the vision information from the camera are combined, using an extended Kalman filter. The proposed vision tracking system is implemented in a mobile robot and evaluated experimentally. The experimental results are obtained as the tracking and the recognition success rate using a mobile robot. The developed system achieved the excellent tracking and recognition performance during slip or collision occurrences under dynamic circumstances.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010