By Topic

A visual exploration algorithm using semantic cues that constructs image based hybrid maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnan, A.K. ; Robot. Res. Center, IIIT Hyderabad, Hyderabad, India ; Krishna, K.M.

A vision based exploration algorithm that invokes semantic cues for constructing a hybrid map of images - a combination of semantic and topological maps is presented in this paper. At the top level the map is a graph of semantic constructs. Each node in the graph is a semantic construct or label such as a room or a corridor, the edge represented by a transition region such as a doorway that links the two semantic constructs. Each semantic node embeds within it a topological graph that constitutes the map at the middle level. The topological graph is a set of nodes, each node representing an image of the higher semantic construct. At the low level the topological graph embeds metric values and relations, where each node embeds the pose of the robot from which the image was taken and any two nodes in the graph are related by a transformation consisting of a rotation and translation. The exploration algorithm explores a semantic construct completely before moving or branching onto a new construct. Within each semantic construct it uses a local feature based exploration algorithm that uses a combination of local and global decisions to decide the next best place to move. During the process of exploring a semantic construct it identifies transition regions that serve as gateways to move from that construct to another. The exploration is deemed complete when all transition regions are marked visited. Loop detection happens at transition regions and graph relaxation techniques are used to close loops when detected to obtain a consistent metric embedding of the robot poses. Semantic constructs are labeled using a visual bag of words (VBOW) representation with a probabilistic SVM classifier.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010