By Topic

Tumor CE image classification using SVM-based feature selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baopu Li ; Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Meng, M.Q.-H.

In this paper, we propose a new scheme aimed for gastrointestinal (GI) tumor capsule endoscopy (CE) images classification, which utilizes sequential forward floating selection (SFFS) together with support vector machine (SVM). To achieve this goal, candidate features related to texture characteristics of CE images are extracted. With these candidate features, SFFS based on SVM is applied to select the most discriminative features that can separate normal CE images from tumor CE images. Comprehensive experiments on our present CE image data verify that it is promising to employ the proposed scheme to recognize tumor CE images.

Published in:

Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on

Date of Conference:

18-22 Oct. 2010