By Topic

Two-sided multiplications are reduced to one-sided multiplication in linear piece in hand matrix methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tadaki, K. ; R&D Initiative, Chuo Univ., Tokyo, Japan ; Tsujii, S.

The linear Piece In Hand (PH, for short) matrix methods are general prescriptions which can be applicable to any type of multivariate public key cryptosystems (MPKCs, for short) for the purpose of enhancing their security. Among them, the primitive linear PH matrix method was introduced in our previous work [S. Tsujii, K. Tadaki, and R. Fujita, Cryptology ePrint Archive, Report 2004/366, December 2004] to explain the notion of the PH matrix methods in general in an illustrative manner and not for a practical use to enhance the security of any given MPKC. In 2005, for the purpose of enhancing the security of the primitive linear PH matrix method to a practical level, Akasaki proposed a variant of the primitive linear PH matrix method, called the two-sided linear PH matrix method. In this paper we show that the two-sided linear PH matrix method is reduced to the primitive linear PH matrix method. Based on this, we show that the two-sided linear PH matrix method cannot be more secure than the primitive linear PH matrix method.

Published in:

Information Theory and its Applications (ISITA), 2010 International Symposium on

Date of Conference:

17-20 Oct. 2010