By Topic

On the relationship between file sizes, transport protocols, and self-similar network traffic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kihong Park ; Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA ; Gitae Kim ; M. Crovella

Measurements of LAN and WAN traffic show that network traffic exhibits variability on different scales. We examine a mechanism that gives rise to self-similar network traffic and discuss performance. The mechanism we study is the transfer of files or messages whose size is drawn from a heavy-tailed distribution. In a realistic client/server network the degree to which file sizes are heavy-tailed can directly determine the degree of traffic self-similarity at the link level. This causal relationship is robust relative to changes in network resources, network topology, the influence of cross-traffic, and the distribution of interarrival times. Properties of the transport layer play an important role in preserving and modulating this relationship. The reliable transmission and flow control mechanisms of TCP serve to maintain the long-range dependency structure induced by heavy-tailed file size distributions. In contrast, if a non-flow-controlled and unreliable (UDP-based) transport protocol is used, the resulting traffic shows little self-similarity: although still bursty at short time scales, it has little long-range dependence. Performance implications of self-similarity are discussed as represented by various performance measures. Increased self-similarity as expected, results in degradation of performance. Queueing delay, in particular is discussed. Throughput-related measures such as packet loss and retransmission rate, however increase only gradually with increasing traffic self-similarity as long as reliable, flow-controlled transport protocol is used

Published in:

Network Protocols, 1996. Proceedings., 1996 International Conference on

Date of Conference:

29 Oct-1 Nov 1996