Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Scale-Adaptive Spatial Appearance Feature Density Approximation for Object Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liu, C.Y. ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, Pokfulam, China ; Yung, N.H.C.

Object tracking is an essential task in visual traffic surveillance. Ideally, a tracker should be able to accurately capture an object's natural motion such as translation, rotation, and scaling. However, it is well known that object appearance varies due to changes in viewing angle, scale, and illumination. They introduce ambiguity to the image cue on which a visual tracker usually relies and which affects the tracking performance. Thus, a robust image appearance cue is required. This paper proposes scale-adaptive spatial appearance feature density approximation to represent objects and construct the image cue. It is found that the appearance representation improves the sensitivity on both the object's rotation and scale. The image cue is then constructed by both the appearance representation of the object and its surrounding background such that distinguishable parts of an object can be tracked under poor imaging conditions. Moreover, tracking dynamics is integrated with the image cue so that objects are efficiently localized in a gradient-based process. Comparative experiments show that the proposed method is effective in capturing the natural motion of objects and generating better tracking accuracy under different image conditions.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:12 ,  Issue: 1 )