By Topic

Optimizing a Tone Curve for Backward-Compatible High Dynamic Range Image and Video Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zicong Mai ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Mansour, H. ; Mantiuk, R. ; Nasiopoulos, P.
more authors

For backward compatible high dynamic range (HDR) video compression, the HDR sequence is reconstructed by inverse tone-mapping a compressed low dynamic range (LDR) version of the original HDR content. In this paper, we show that the appropriate choice of a tone-mapping operator (TMO) can significantly improve the reconstructed HDR quality. We develop a statistical model that approximates the distortion resulting from the combined processes of tone-mapping and compression. Using this model, we formulate a numerical optimization problem to find the tone-curve that minimizes the expected mean square error (MSE) in the reconstructed HDR sequence. We also develop a simplified model that reduces the computational complexity of the optimization problem to a closed-form solution. Performance evaluations show that the proposed methods provide superior performance in terms of HDR MSE and SSIM compared to existing tone-mapping schemes. It is also shown that the LDR image quality resulting from the proposed methods matches that produced by perceptually-based TMOs.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 6 )