By Topic

Active Volume Models for Medical Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tian Shen ; Dept. of Comput. Sci. & Eng., Lehigh Univ., Bethlehem, PA, USA ; Hongsheng Li ; Xiaolei Huang

In this paper, we propose a novel predictive model, active volume model (AVM), for object boundary extraction. It is a dynamic “object” model whose manifestation includes a deformable curve or surface representing a shape, a volumetric interior carrying appearance statistics, and an embedded classifier that separates object from background based on current feature information. The model focuses on an accurate representation of the foreground object's attributes, and does not explicitly represent the background. As we will show, however, the model is capable of reasoning about the background statistics thus can detect when is change sufficient to invoke a boundary decision. When applied to object segmentation, the model alternates between two basic operations: 1) deforming according to current region of interest (ROI), which is a binary mask representing the object region predicted by the current model, and 2) predicting ROI according to current appearance statistics of the model. To further improve robustness and accuracy when segmenting multiple objects or an object with multiple parts, we also propose multiple-surface active volume model (MSAVM), which consists of several single-surface AVM models subject to high-level geometric spatial constraints. An AVM's deformation is derived from a linear system based on finite element method (FEM). To keep the model's surface triangulation optimized, surface remeshing is derived from another linear system based on Laplacian mesh optimization (LMO) , . Thus efficient optimization and fast convergence of the model are achieved by solving two linear systems. Segmentation, validation and comparison results are presented from experiments on a variety of 2-D and 3-D medical images.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:30 ,  Issue: 3 )