By Topic

Click fraud prevention in pay-per-click model: Learning through multi-model evidence fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kantardzic, M. ; Comput. Eng. & Comput. Sci. Dept., Univ. of Louisville, Louisville, KY, USA ; Walgampaya, C. ; Emara, W.

Multi-sensor data fusion has been an area of intense recent research and development activity. This concept has been applied to numerous fields and new applications are being explored constantly. Multi-sensor based Collaborative Click Fraud Detection and Prevention (CCFDP) system can be viewed as a problem of evidence fusion. In this paper we detail the multi level data fusion mechanism used in CCFDP for real time click fraud detection and prevention. Prevention mechanisms are based on blocking suspicious traffic by IP, referrer, city, country, ISP, etc. Our system maintains an online database of these suspicious parameters. We have tested the system with real-world data from an actual ad campaign where the results show that use of multilevel data fusion improves the quality of click fraud analysis.

Published in:

Machine and Web Intelligence (ICMWI), 2010 International Conference on

Date of Conference:

3-5 Oct. 2010