By Topic

Customizing knowledge-based recommender system by tracking analysis of user behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaohui Li ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Kitakyusyu, Japan ; Murata, T.

In this paper, we reviewed the major problems in the existing recommender systems and presented a tracking recommender approach based on user's behavior information and two-level property of items. Our proposed approach defined user profile model, knowledge resources model and constructed Formal Concept Analysis (FCA) mapping to guide a personalized recommendation for user. We simulated a prototype recommender system that can make the quality recommendation by tracking user's behavior. The experimental result showed our strategy was more robust against the drawbacks and preponderant than conventional recommender systems.

Published in:

Industrial Engineering and Engineering Management (IE&EM), 2010 IEEE 17Th International Conference on

Date of Conference:

29-31 Oct. 2010