By Topic

Permutation flow shop scheduling algorithm based on a hybrid particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hai-bo Tang ; College of Management, University of Shanghai for Science and Technology, 200093, China ; Chun-ming Ye

The permutation flow shop scheduling problem is a part of production scheduling, which belongs to the hardest combinatorial optimization problem. A new hybrid algorithm is introduced which we called it HPSO, It combines knowledge evolution algorithm(KEA) and particle swarm optimization(PSO) algorithm for the permutation flow shop scheduling problem. The objective function is to search for a sequence of jobs in order that we can obtain the minimization value of maximum completion time (makespan). By the mechanism of KEA, its global search ability is fully utilized for finding the global solution. By the operating characteristic of PSO, the local search ability is also made full use. The experimental results indicate that the solution quality of the permutation flow shop scheduling problem based on HPSO is better than those based on Genetic algorithm, and than those based on standard PSO.

Published in:

Industrial Engineering and Engineering Management (IE&EM), 2010 IEEE 17Th International Conference on

Date of Conference:

29-31 Oct. 2010