By Topic

Cell Association and Interference Coordination in Heterogeneous LTE-A Cellular Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Embedding pico/femto base-stations and relay nodes in a macro-cellular network is a promising method for achieving substantial gains in coverage and capacity compared to macro-only networks. These new types of base-stations can operate on the same wireless channel as the macro-cellular network, providing higher spatial reuse via cell splitting. However, these base-stations are deployed in an unplanned manner, can have very different transmit powers, and may not have traffic aggregation among many users. This could potentially result in much higher interference magnitude and variability. Hence, such deployments require the use of innovative cell association and inter-cell interference coordination techniques in order to realize the promised capacity and coverage gains. In this paper, we describe new paradigms for design and operation of such heterogeneous cellular networks. Specifically, we focus on cell splitting, range expansion, semi-static resource negotiation on third-party backhaul connections, and fast dynamic interference management for QoS via over-the-air signaling. Notably, our methodologies and algorithms are simple, lightweight, and incur extremely low overhead. Numerical studies show that they provide large gains over currently used methods for cellular networks.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 9 )