By Topic

A graphical dataflow programming model for on-line signal processing on parallel architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yongsen Jiang ; Beihua Univ., Jilin, China

Many real-world signal processing applications require an enormous amount of computational power. When these applications are deployed in on-line settings, many hurdles including stringent timing constraints must be overcome. Additionally, the number of channels feeding mathematical DSP routines is growing rapidly, easily reaching 1,000 to 100,000 channels. These applications have increasingly demanding performance requirements for generating control outputs which interact with real-world processes, where 1 ms loop times are not uncommon. In this paper, we describe a graphical dataflow approach capable of yielding the necessary computational power and meeting aggressive timing constraints. We combine this methodology with strategies for targeting a combination of processors including CPUs, FPGAs, and GPUs deployed on standard PCs, workstations, and real-time systems. We demonstrate this approach through case studies on adaptive mirror control for an extremely large telescope and plasma measurement via soft X-ray tomography.

Published in:

Knowledge Acquisition and Modeling (KAM), 2010 3rd International Symposium on

Date of Conference:

20-21 Oct. 2010