By Topic

Composite Energy Storage System Involving Battery and Ultracapacitor With Dynamic Energy Management in Microgrid Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haihua Zhou ; Department of Electrical and Computer Engineering, National University of Singapore, Engineering drive-3, Singapore ; Tanmoy Bhattacharya ; Duong Tran ; Tuck Sing Terence Siew
more authors

Renewable-energy-based microgrids are a better way of utilizing renewable power and reduce the usage of fossil fuels. Usage of energy storage becomes mandatory when such microgrids are used to supply quality power to the loads. Microgrids have two modes of operation, namely, grid-connected and islanding modes. During islanding mode, the main responsibility of the storage is to perform energy balance. During grid-connected mode, the goal is to prevent propagation of the renewable source intermittency and load fluctuations to the grid. Energy storage of a single type cannot perform all these jobs efficiently in a renewable powered microgrid. The intermittent nature of renewable energy sources like photovoltaic (PV) demands usage of storage with high energy density. At the same time, quick fluctuation of load demands storage with high power density. This paper proposes a composite energy storage system (CESS) that contains both high energy density storage battery and high power density storage ultracapacitor to meet the aforementioned requirements. The proposed power converter configuration and the energy management scheme can actively distribute the power demand among the different energy storages. Results are presented to show the feasibility of the proposed scheme.

Published in:

IEEE Transactions on Power Electronics  (Volume:26 ,  Issue: 3 )