By Topic

Topological Well-Composedness and Glamorous Glue: A Digital Gluing Algorithm for Topologically Constrained Front Propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tustison, N.J. ; Radiol., Univ. of Virginia, Charlottesville, VA, USA ; Avants, B.B. ; Siqueira, M. ; Gee, J.C.

We propose a new approach to front propagation algorithms based on a topological variant of well-composedness which contrasts with previous methods based on simple point detection. This provides for a theoretical justification, based on the digital Jordan separation theorem, for digitally “gluing” evolved well-composed objects separated by well-composed curves or surfaces. Additionally, our framework can be extended to more relaxed topologically constrained algorithms based on multisimple points. For both methods this framework has the additional benefit of obviating the requirement for both a user-specified connectivity and a topologically-consistent marching cubes/squares algorithm in meshing the resulting segmentation.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 6 )