Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Genetic Programming Approach to Record Deduplication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Several systems that rely on consistent data to offer high-quality services, such as digital libraries and e-commerce brokers, may be affected by the existence of duplicates, quasi replicas, or near-duplicate entries in their repositories. Because of that, there have been significant investments from private and government organizations for developing methods for removing replicas from its data repositories. This is due to the fact that clean and replica-free repositories not only allow the retrieval of higher quality information but also lead to more concise data and to potential savings in computational time and resources to process this data. In this paper, we propose a genetic programming approach to record deduplication that combines several different pieces of evidence extracted from the data content to find a deduplication function that is able to identify whether two entries in a repository are replicas or not. As shown by our experiments, our approach outperforms an existing state-of-the-art method found in the literature. Moreover, the suggested functions are computationally less demanding since they use fewer evidence. In addition, our genetic programming approach is capable of automatically adapting these functions to a given fixed replica identification boundary, freeing the user from the burden of having to choose and tune this parameter.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 3 )