By Topic

NSGAII Applied to Unified Second Level Cache Memory Hierarchy Tuning Aiming Energy and Performance Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cordeiro, F.R. ; Centro de Inf. (CIn), Univ. Fed. de Pernambuco (UFPE), Recife, Brazil ; Silva-Filho, A.G.

The evolutionary algorithm NSGAII was applied to the problem of cache memory hierarchy optimization, considering unified second level. The proposed multi-objective approach considers two main objectives: energy consumption and performance related to the number of cycles necessary to run an application. Experiments done with 18 applications from two benchmarks (Power Stone and Mibench) permitted to conclude that found solutions, when NSGAII is applied, are close to optimal solutions. Results also were compared with an existing heuristic (TECH-CYCLES) and was observed that the quality of results obtained are superior in all analyzed cases, being in average 187 times lower in terms of the cost function (FC=Energy x Cycles) that represents the two components: energy and cycles of the application. Evaluating the impact in terms of number of simulations and obtained results, could be noticed that NSGAII needs only 1% of search space, becoming competitive for architecture exploration with unified second level.

Published in:

Computing Systems (WSCAD-SCC), 2010 11th Symposium on

Date of Conference:

27-30 Oct. 2010