By Topic

Normalizing Source Code Vocabulary

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lawrie, D. ; Loyola Univ. Maryland, Baltimore, MD, USA ; Binkley, D. ; Morrell, C.

Information Retrieval (IR) based tools complement traditional static and dynamic analysis tools by exploiting the natural language found within a program's text. Tools incorporating IR have tackled problems, such as feature location, that previously required considerable human effort. However, to reap the full benefit of IR-based techniques, the language used across all software artifacts (e.g., requirement and design documents, test plans, as well as the source code) must be consistent. Vocabulary normalization aligns the vocabulary found in source code with that found in other software artifacts. Normalization both splits an identifier into its constituent parts and expands each part into a full dictionary word to match vocabulary in other artifacts. An algorithm for normalization is presented. Its current implementation incorporates a greatly improved splitter that exploits a collection of resources including several dictionaries, frequency distributions derived from the corpus of programs, and co-occurrence data. Empirical study of this new splitter, GenTest, on almost 8000 identifiers finds that it correctly splits 82%, outperforming the current state-of-the-art. A preliminary experiment with the normalization algorithm finds it improving the FLAT ̂ 3 feature locator's scores of relevant code from 0.60 to 0.95 on a scale from 0 to 1.

Published in:

Reverse Engineering (WCRE), 2010 17th Working Conference on

Date of Conference:

13-16 Oct. 2010