By Topic

Performance, accuracy, power consumption and resource utilization analysis for hardware / software realized Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Braga, A.L.S. ; Dept. of Mech. Eng., Univ. of Brasilia - UnB, Brasilia, Brazil ; Llanos, C.H. ; Gohringer, D. ; Obie, J.
more authors

Artificial Neural Networks (ANN) are used to perform tasks like classification, pattern recognition and function approximations in many cases to which traditional approaches are not well suited. Hardware implementations have been presented, mainly in academical works, in order to take advantage of the inherent parallelism in ANNs. In the field of embedded systems it is desirable to have faster and less power demanding designs. This work analyzes implementations of ANNs in FPGAs both in Hardware Description Language (HDL) and in software code running on different configurations of the Xilinx MicroBlaze microprocessor. Three versions of an ANN design were implemented in HDL and a software version was executed in four different configurations of the Xilinx MicroBlaze microprocessor. Results for power consumption, FPGA occupation, speed and accuracy of the outputs are presented for practical experiments performed in two FPGAs from different families of Xilinx devices: a Spartan 3E and a Virtex 5.

Published in:

Bio-Inspired Computing: Theories and Applications (BIC-TA), 2010 IEEE Fifth International Conference on

Date of Conference:

23-26 Sept. 2010