Cart (Loading....) | Create Account
Close category search window
 

A Cache Replacement Policy Using Adaptive Insertion and Re-reference Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xi Zhang ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Chongmin Li ; Haixia Wang ; Dongsheng Wang

Previous research shows that LRU replacement policy is not efficient when applications exhibit a distant re-reference interval. Recently proposed RRIP policy improves performance for such workloads. However, RRIP lacks of access recency information, which may confuse the replacement policy to make accurate prediction. Consequently, RRIP is not robust for recency-friendly workloads. This paper proposes an Adaptive Insertion and Re-reference Prediction (AI-RRP) policy which evicts data based on both re-reference prediction value and the access recency information. To make the replacement policy more adaptive across different workloads and different phases during execution, Dynamic AI-RRP (DAI-RRP) is proposed which adjusts the insertion position and prediction value for different access patterns. Simulation results show DAI-RRP reduces CPI over LRU and Dynamic RRIP by an average of 8.3% and 4.1% respectively on a single-core processor with a 1MB 16-way set last-level cache (LLC). Evaluations on quad-core CMP with a 4MB shared LLC show that DAI-RRP outperforms LRU and Dynamic RRIP (DRRIP) on the weighted speedup metric by an average of 13.2% and 26.7% respectively. Furthermore, compred to LRU, DAI-RRP requires similar hardware, or even less hardware for high-associativity cache.

Published in:

Computer Architecture and High Performance Computing (SBAC-PAD), 2010 22nd International Symposium on

Date of Conference:

27-30 Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.