By Topic

A Parallel Implementation of Electron-Phonon Scattering in Nanoelectronic Devices up to 95k Cores

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Luisier, M. ; Purdue Univ., West Lafayette, IN, USA

A quantum transport approach based on the Non-equilibrium Green's Function formalism and the tight-binding method has been developed to investigate the performances of atomistically resolved nanoelectronic devices in the presence of electron-phonon scattering. The model is integrated into a quad-level parallel environment (bias, momentum, energy, and spatial domain decomposition) that scales almost perfectly up to 220k cores in the ballistic limit of electron transport. In this case, the momentum and energy points form a quasi-embarrassingly parallel problem. The novelty in this paper is the inclusion of scattering self-energies that couple all the momenta and several energies together, requiring substantial inter-processor communication. An efficient parallel implementation of electron-phonon scattering is therefore proposed and applied to a realistically extended transistor structure. A good scaling of the simulation walltime up to 95,256 cores and a sustained performance of 142 TFlop/s are reported on the Cray-XT5 Jaguar.

Published in:

High Performance Computing, Networking, Storage and Analysis (SC), 2010 International Conference for

Date of Conference:

13-19 Nov. 2010