Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Control of a hybrid high-voltage DC connection for large doubly fed induction generator-based wind farms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Zhou, H. ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Yang, G. ; Wang, J. ; Geng, H.

This study presents the control method for a new hybrid high-voltage dc (HVDC) connection for large wind farms with doubly fed induction generators (DFIGs). The hybrid HVDC system consists of a line-commutated converter plus a static synchronous compensator (STATCOM) on the rectifier side and a pulse-width modulation (PWM) current source inverter (CSI) on the inverter side. The overall control strategy is divided into three parts, where the STATCOM subsystem supports the island bus voltage; the rectifier subsystem delivers the active power generated by the wind farm; and the CSI subsystem injects the active power - as well as reactive power, if necessary - to the grid. Taking into account the non-linear and coupling characteristics of each subsystem, a series of control schemes is proposed: for the STATCOM subsystem, a state feedback linearisation and decoupling method is employed; for the rectifier subsystem, a double-loop controller is designed and its inner loop is based on the inverse-system control techniques; for the CSI subsystem, independent active and reactive power control scheme is proposed. Through Simulink/SimPowerSystems simulations on a representative hybrid HVDC system, the startup process is demonstrated and system performances under both normal and fault conditions are investigated.

Published in:

Renewable Power Generation, IET  (Volume:5 ,  Issue: 1 )