By Topic

A Cost-Efficient L1–L2 Multicore Interconnect: Performance, Power, and Area Considerations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Processor manufacturers use advances in manufacturing technologies to increase the number of cores on chip in order to scale performance in a cost-efficient manner. As the number of cores scales up, not all cores can be directly connected to the main memory and there is a need for hierarchy, for example, by arranging them in clusters that share L2 caches. This paper focuses on designing cost-efficient L1-L2 interconnects. We discuss performance and power- and area-consumption considerations for a real processor designed in 45-nm technology. We explain the architectures and heuristics developed, including a smart floorplan with instance flips to address interconnect latency, customized decentralized arbitration schemes tailored per transaction type, and heterogeneous Vt device assignment to reduce overall power consumption, taking into account the expected switching factors. These and other methods worked together to achieve high throughput in a power-efficient interconnect that consumes less than 3% of the compute cluster area.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:58 ,  Issue: 3 )