By Topic

Cross-Layer Survivability in WDM-Based Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, K. ; Massachusetts Inst. of Technol., Cambridge, MA, USA ; Modiano, E. ; Hyang-Won Lee

In layered networks, a single failure at a lower layer may cause multiple failures in the upper layers. As a result, traditional schemes that protect against single failures may not be effective in multilayer networks. In this paper, we introduce the problem of maximizing the connectivity of layered networks. We show that connectivity metrics in layered networks have significantly different meaning than their single-layer counterparts. Results that are fundamental to survivable single-layer network design, such as the Max-Flow Min-Cut Theorem, are no longer applicable to the layered setting. We propose new metrics to measure connectivity in layered networks and analyze their properties. We use one of the metrics, Min Cross Layer Cut, as the objective for the survivable lightpath routing problem and develop several algorithms to produce lightpath routings with high survivability. This allows the resulting cross-layer architecture to be resilient to failures between layers.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 4 )