By Topic

Image Segmentation Using Fuzzy Region Competition and Spatial/Frequency Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Choy, S.K. ; Dept. of Math. & Stat., Hang Seng Manage. Coll., Hong Kong, China ; Tang, M.L. ; Tong, C.S.

This paper presents a multiphase fuzzy region competition model that takes into account spatial and frequency information for image segmentation. In the proposed energy functional, each region is represented by a fuzzy membership function and a data fidelity term that measures the conformity of spatial and frequency data within each region to (generalized) Gaussian densities whose parameters are determined jointly with the segmentation process. Compared with the classical region competition model, our approach gives soft segmentation results via the fuzzy membership functions, and moreover, the use of frequency data provides additional region information that can improve the overall segmentation result. To efficiently solve the minimization of the energy functional, we adopt an alternate minimization procedure and make use of Chambolle's fast duality projection algorithm. We apply the proposed method to synthetic and natural textures as well as real-world natural images. Experimental results show that our proposed method has very promising segmentation performance compared with the current state-of-the-art approaches.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 6 )