Cart (Loading....) | Create Account
Close category search window
 

Temperature Measurement Using the Wedge Method: Comparison and Application to Emissivity Estimation and Compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Usamentiaga, R. ; Dept. of Comput. Sci. & Eng., Univ. of Oviedo, Gijón, Spain ; Garcia, D.F. ; Molleda, J. ; Bulnes, F.G.
more authors

Temperature measurement based on infrared radiation depends on correctly adjusted emissivity. However, emissivity configuration is complex as emissivity is not normally known with precision; it is influenced by radiation reflections and can also vary with the temperature. The wedge method is a temperature measurement method which assures the selection of the correct emissivity configuration using an infrared camera to take images of a wedge region. Within the wedge, a virtually closed cavity for radiation is created. Although this method outperforms traditional infrared measurement, no comparison has yet been carried out under real industrial conditions which would provide information about emissivity variations. This paper proposes a method to measure temperature using the wedge method in industrial environments and compares the results with the temperature measurement acquired from a calibrated infrared line scanner. Using the wedge method, it is possible to accurately estimate emissivity profiles under real working conditions. A method to apply these profiles for emissivity compensation is also proposed in this paper. Conclusions give the analysis of the strengths and weaknesses of the two methods and provide recommendations and guidelines for technicians interested in temperature measurement and emissivity estimation and compensation.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 5 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.