Cart (Loading....) | Create Account
Close category search window
 

Theoretical Modeling and Experimental High-Speed Imaging of Elongated Vocal Folds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Zhang ; Lab. of Underwater Acoust. Commun. & Marine Inf. Technol. of the Minist. of Educ., Xiamen Univ., Xiamen, China ; Regner, M.F. ; Jiang, J.J.

In this paper, the role of vocal fold elongation in governing glottal movement dynamics was theoretically and experimentally investigated. A theoretical model was first proposed to incorporate vocal fold elongation into the two-mass model. This model predicted the direct and nondirect components of the glottal time series as a function of vocal fold elongation. Furthermore, high-speed digital imaging was applied in excised larynx experiments to visualize vocal fold vibrations with variable vocal fold elongation from -10% to 50% and subglottal pressures of 18- and 24-cm H2O. Comparison between theoretical model simulations and experimental observations showed good agreement. A relative maximum was seen in the nondirect component of glottal area, suggesting that an optimal elongation could maximize the vocal fold vibratory power. However, sufficiently large vocal fold elongations caused the nondirect component to approach zero and the direct component to approach a constant. These results showed that vocal fold elongation plays an important role in governing the dynamics of glottal area movement and validated the applicability of the proposed theoretical model and high-speed imaging to investigate laryngeal activity.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.