By Topic

Feature selection method for facial representation using parzen-window density estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heng Fui Liau ; Dept. of Electr. & Electron. Eng., Univ. of Nottingham, Semenyih, Malaysia ; Isa, D.

This paper proposes a feature selection method that aims to select an optimal feature subset to representing facial image from the point of view of minimizing the total error rate (TER) of the system. In this proposed approach, the genuine user score distribution and the imposter score distribution are modeled based on a Parzen-window density estimation to enable the direct estimation of total error rate (TER) as reflected by the area under the curve of the overlapping region of both distributions. Particle swarm optimization (PSO) is employed to search for feature subsets which are extracted from discrete cosine transform or principal component analysis that gives minimum TER and in the meantime to reduce the dimensionality of the feature set thereby reducing processing time.

Published in:

Computational Intelligence and Natural Computing Proceedings (CINC), 2010 Second International Conference on  (Volume:1 )

Date of Conference:

13-14 Sept. 2010