By Topic

Chaotic time series prediction using combination of Hidden Markov Model and Neural Nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Saurabh Bhardwaj ; Netaji Subhas Institute Of Technology, Delhi University, New Delhi, India, 110078 ; Smriti Srivastava ; S. Vaishnavi ; J. R. P Gupta

This paper introduces a novel method for the prediction of chaotic time series using a combination of Hidden Markov Model (HMM) and Neural Network (NN). In this paper, an algorithm is proposed wherein an HMM, which is a doubly embedded stochastic process, is used for the shape based clustering of data. These data clusters are trained individually with Neural Network. The novel prediction approach used here exploits the Pattern Identification prowess of the HMM for cluster selection and uses the NN associated with each cluster to predict the output of the system. The effectiveness of the method is evaluated by using the benchmark chaotic time series: Mackey Glass Time Series (MGTS). Simulation results show that the given method provides a better prediction performance in comparison to previous methods.

Published in:

Computer Information Systems and Industrial Management Applications (CISIM), 2010 International Conference on

Date of Conference:

8-10 Oct. 2010