Cart (Loading....) | Create Account
Close category search window
 

Stability of a-Si:H solar cells and corresponding intrinsic materials fabricated using hydrogen diluted silane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lee, Yeeheng ; Center for Electron. Mater. & Process., Pennsylvania State Univ., University Park, PA, USA ; Jiao, Lihong ; Liu, Hongyue ; Lu, Z.
more authors

We report on a study in which properties of p(a-SiC:H)/i(a-Si:H)/n(μc-Si) a-Si:H solar cells and their i-materials prepared with hydrogen dilution are investigated and compared with films and cells prepared without hydrogen dilution. The cells and the corresponding intrinsic films were fabricated in a multi-chamber PECVD system with pure silane (SiH4) and silane diluted with hydrogen in the ratio [H2]/[SiH4]=10. The initial performance of both types of cells (~4000 Å thick) fabricated without optical enhancement are quite similar but the diluted cells are significantly more stable. Despite the reported importance of the interface regions in determining their solar cell characteristics, a direct correlation between the degradation of the diluted solar cells and their intrinsic films is observed in this study. Both diluted cells and films reach a steady state of degradation under AM1 illumination within 100 hours. Distinctly different kinetics from the undiluted materials and cells and the ability to reach steady state degradation in less than 100 hours offer a new probe for improving our understanding of the mechanisms limiting cell performance

Published in:

Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE

Date of Conference:

13-17 May 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.