By Topic

Computing the Effects of Operator Attention Allocation in Human Control of Multiple Robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Crandall, J.W. ; Comput. & Inf. Sci. Program, Masdar Inst. of Sci. & Technol., Abu Dhabi, United Arab Emirates ; Cummings, M.L. ; Della Penna, M. ; de Jong, P.M.A.

In time-critical systems in which a human operator supervises multiple semiautomated tasks, failure of the operator to focus attention on high-priority tasks in a timely manner can lower the effectiveness of the system and potentially result in catastrophic consequences. These systems must integrate computer-based technologies that help the human operator place attention on the right tasks at the right times to be successful. One way to assist the operator in this process is to compute where the operator's attention should be focused and then use this computation to influence the operator's behavior. In this paper, we analyze the ability of a particular modeling method to make such computations for effective attention allocation in human-multiple-robot systems. Our results demonstrate that it is not sufficient to simply compute and dictate how operators should allocate their attention. Rather, in stochastic domains, where small changes in either the endogenous or exogenous environment can dramatically affect model fidelity, model predictions should guide rather than dictate operator attentional resources so that operators can effectively exercise their judgment and experience.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:41 ,  Issue: 3 )