Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

High Voltage Dielectric Characteristics of Epoxy Nano-Composites in Liquid Nitrogen for Superconducting Equipment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
8 Author(s)
Lee, Y.J. ; Hanyang Univ., Ansan, South Korea ; Shin, W.J. ; Lee, S.H. ; Koo, J.Y.
more authors

Cryogenic dielectric insulation skills play a significant role in the development of superconducting electric equipment for transmission and distribution electric network. Nowadays, newly developed nano-composites have shown enhanced electrical, thermal, and mechanical properties of polymer insulation materials. And the application of nano-composites in high voltage power systems could be implemented in the near future. Among the various nano-composites, epoxy nano-composites have been paid much attention as a new insulating material for high voltage insulation. In this paper, we presented experimental results of epoxy nanocomposites in liquid nitrogen and determined the possible applications of nano-composites as insulating material for superconducting equipment. In order to determine their dielectric breakdown properties in liquid nitrogen, various kinds of epoxy based nano-composites have been made by mixing SiO2, Al2O3, TiO2 fillers, respectively. AC withstand voltage test and partial discharge (PD) inception voltage tests have been performed to verify the insulation breakdown characteristics of nano-composites in cryogenic environment. Consequently, it was deduced that the breakdown strength of epoxy nano-composites have been improved compared to epoxy with micro-fillers in cryogenic environment. And epoxy nano-composites immersed in liquid nitrogen showed a similar breakdown voltage characteristic when compared with that of insulating oil. In addition, the effects of nano-composites have been varied according to the concentration of nano-fillers and their content of fillers.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 3 )