By Topic

Development of a High-Lumen Solid State Down Light Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Mehmet Arik ; Thermal Systems Laboratory, GE Global Research Center, Niskayuna, NY, USA ; Rajdeep Sharma ; Jennifer Jackson ; Satish Prabhakaran
more authors

Light-emitting diode (LED)-based solid-state lighting (SSL) products have been exceeding the predicted performances especially at the chip and package levels. This has led to new SSL-based products for energy savings and long lifetimes. Large amounts of government funding and private investments have been made during the last decade to accelerate and guide the technology. This paper focuses on the development of an LED-based high-lumen luminaire technology. The critical subcomponents of the luminaire are the LED light engine (LED chips and optical system), thermal management, and driver electronics. Each of these subcomponents will be discussed in detail for a 100 W incandescent replacement technology. The paper addresses system integration of each of the subcomponents. While the design of new products evolve, the lack of reliability data poses a risk of premature failure of LED-based products. Premature failures would trigger customer rejection and may delay market penetration. Therefore, luminaire reliability is an important aspect of luminaire design. In cohort with this notion, finally, the luminaire reliability has been discussed.

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:33 ,  Issue: 4 )