By Topic

A new software tool for static analysis of SET sensitiveness in Flash-based FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
N. Battezzati ; Politecnico di Torino, Italy ; L. Sterpone ; M. Violante ; F. Decuzzi

The higher resiliency of Flash-based FPGAs to Single Event Upsets (SEUs) with respect to other non radiation-hardened devices, such as SRAM-based FPGAs, are increasing more and more their demand for avionic and space applications, where a harsh environment rich in ionizing radiation has to be faced. In this type of devices other transient faults tend to dominate over SEUs, especially when the device operates at high frequency. In this scenario, it is expected that Single Event Transient (SET) faults will predominate. As a result, designers will still need prediction techniques to forecast the effects of ionizing radiation in their designs. Although radiation testing is a feasible method for evaluating circuit sensitiveness against SETs, it is hard to implement, very expensive, and it can be used only in later phases of the design process, when a prototype of the system is available. On the other hand, simulation techniques need a first technology characterization step and also require a very detailed model for being effective; moreover they are application dependent. In this paper we propose a new software tool for analyzing designs implemented in Flash-based FPGAs and estimating SET sensitiveness. The evaluation process is static, as it does not entail any simulation. In particular, it provides worst-case results, thus being intrinsically more conservative than other dynamic methods. Experimental results are presented comparing the ones coming from radiation testing and the results provided by the presented tool. They validate the proposed approach.

Published in:

2010 18th IEEE/IFIP International Conference on VLSI and System-on-Chip

Date of Conference:

27-29 Sept. 2010