Cart (Loading....) | Create Account
Close category search window
 

Structural and optical properties of dilute InAsN grown by molecular beam epitaxy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Ibanez, J. ; Institut Jaume Almera, Consell Superior d’Investigacions Científiques (CSIC), Lluís Solé i Sabarís s.n, 08028 Barcelona, Catalonia, Spain ; Oliva, R. ; De la Mare, M. ; Schmidbauer, M.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3509149 

We perform a structural and optical characterization of InAs1-xNx epilayers grown by molecular beam epitaxy on InAs substrates (x>~2.2%). High-resolution x-ray diffraction (HRXRD) is used to obtain information about the crystal quality and the strain state of the samples and to determine the N content of the films. The composition of two of the samples investigated is also obtained with time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measurements. The combined analysis of the HRXRD and ToF-SIMS data suggests that the lattice parameter of InAsN might significantly deviate from Vegard’s law. Raman scattering and far-infrared reflectivity measurements have been carried out to investigate the incorporation of N into the InAsN alloy. N-related local vibrational modes are detected in the samples with higher N content. The origin of the observed features is discussed. We study the compositional dependence of the room-temperature band gap energy of the InAsN alloy. For this purpose, photoluminescence and optical absorption measurements are presented. The results are analyzed in terms of the band-anticrossing (BAC) model. We find that the room-temperature coupling parameter for InAsN within the BAC model is CNM=2.0±0.1 eV.

Published in:

Journal of Applied Physics  (Volume:108 ,  Issue: 10 )

Date of Publication:

Nov 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.