Cart (Loading....) | Create Account
Close category search window
 

Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Banz, C. ; Inst. of Microelectron. Syst., Leibniz Univ. Hannover, Hannover, Germany ; Hesselbarth, S. ; Flatt, H. ; Blume, H.
more authors

This paper describes a new architecture and the corresponding implementation of a stereo vision system that covers the entire stereo vision process including noise reduction, rectification, disparity estimation, and visualization. Dense disparity estimation is performed using the non-parametric rank transform and semi-global matching (SGM), which is among the top performing stereo matching methods and outperforms locally-based methods in terms of quality of disparity maps and robustness under difficult imaging conditions. Stream-based processing of the SGM despite its non-scan-aligned, complex data dependencies is achieved by a scalable, systolic-array-based architecture. This architecture fulfills the demands of real-world applications regarding frame rate, depth resolution and low resource usage. The architecture is based on a novel two-dimensional parallelization concept for the SGM. An FPGA implementation on a Xilinx Virtex-5 generates disparity maps of VGA images (640×480 pixel) with a 128 pixel disparity range under real-time conditions (30 fps) at a clock frequency as low as 39 MHz.

Published in:

Embedded Computer Systems (SAMOS), 2010 International Conference on

Date of Conference:

19-22 July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.