Cart (Loading....) | Create Account
Close category search window
 

Efficient static buffering to guarantee throughput-optimal FPGA implementation of synchronous dataflow graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hojin Kee ; Dept. of Electr. & Comput. Eng., Univ. of Maryland, College Park, MD, USA ; Bhattacharyya, S.S. ; Kornerup, J.

When designing DSP applications for implementation on field programmable gate arrays (FPGAs), it is often important to minimize consumption of limited FPGA resources while satisfying real-time performance constraints. In this paper, we develop efficient techniques to determine dataflow graph buffer sizes that guarantee throughput-optimal execution when mapping synchronous dataflow (SDF) representations of DSP applications onto FPGAs. Our techniques are based on a novel two-actor SDF graph Model (TASM), which efficiently captures the behavior and costs associated with SDF graph edges (flow-graph connections). With our proposed techniques, designers can automatically generate upper bounds on SDF graph buffer distributions that realize maximum achievable throughput performance for the corresponding applications. Furthermore, our proposed technique is characterized by low polynomial time complexity, which is useful for rapid prototyping in DSP system design.

Published in:

Embedded Computer Systems (SAMOS), 2010 International Conference on

Date of Conference:

19-22 July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.