By Topic

Game theory approach to discrete H filter design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuemin Shen ; Dept. of Electr. & Comput. Eng., Waterloo Univ., Ont., Canada ; Li Deng

A finite-horizon discrete H filter design with a linear quadratic (LQ) game approach is presented. The exogenous inputs composed of the “hostile” noise signals and system initial condition are assumed to be finite energy signals with unknown statistics. The design criterion is to minimize the worst possible amplification of the estimation error signals in terms of the exogenous inputs, which is different from the classical minimum variance estimation error criterion for the modified Wiener or Kalman filter design. The approach can show how far the estimation error can be reduced under an existence condition on the solution to a corresponding Riccati equation. A numerical example is given to compare the performance of the H filter with that of the conventional Kalman filter

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 4 )