By Topic

On the equivalence of the operator and kernel methods for joint distributions of arbitrary variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sayeed, A.M. ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA

Generalizing the concept of time-frequency representations, Cohen (see Englewood Cliffs, NJ: Prentice-Hall, 1995) has proposed a method, based on operator correspondence rules, for generating joint distributions of arbitrary variables. As an alternative to considering all such rules, which is a practical impossibility in general, Cohen has proposed the kernel method in which different distributions are generated from a fixed rule via an arbitrary kernel. We derive a simple but rather stringent necessary condition, on the underlying operators, for the kernel method (with the kernel functionally independent of the variables) to generate all bilinear distributions. Of the specific pairs of variables that have been studied, essentially only time and frequency satisfy the condition; in particular, the important variables of time and scale do not. The results warrant further study for a systematic characterization of bilinear distributions in Cohen's method

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 4 )