By Topic

Fitting MA models to linear non-Gaussian random fields using higher order cumulants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. K. Tugnait ; Dept. of Electr. Eng., Auburn Univ., AL, USA

A general (possibly nonminimum phase and/or asymmetric noncausal) two-dimensional (2-D) moving average (MA) model driven by a zero-mean i.i.d. 2-D sequence is considered. The input sequence is not observed. The signal observations may be noisy. We consider the problems of model order determination and model parameter estimation using the higher order (third- or fourth-order, for example) cumulants of the 2-D signal. Second-order statistics of the data can consistently identify only a smaller class of MA models. The proposed approaches are illustrated via computer simulations

Published in:

IEEE Transactions on Signal Processing  (Volume:45 ,  Issue: 4 )