By Topic

Efficient design of digital filters for 2-D and 3-D depth migration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karam, L.J. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; McClellan, J.H.

Two- and three-dimensional (2-D and 3-D) depth migration can be performed using 1-D and 2-D extrapolation digital filters, respectively. The depth extrapolation is done, one frequency at a time, by convolving the seismic wavefield with a complex-valued, frequency- and velocity-dependent, digital filter. This process requires the design of a complete set of extrapolation filters: one filter for each possible frequency-velocity pair. Instead of independently designing the frequency- and velocity-dependent filters, an efficient procedure is introduced for designing a complete set of 1-D and 2-D extrapolation filters using transformations. The problem of designing a desired set of migration filters is thus reduced to the design of a single 1-D filter, which is then mapped to produce all the desired 1-D or 2-D migration filters. The new design procedure has the additional advantage that both the 1-D and 2-D migration filters can be realized efficiently and need not have their coefficients precomputed or tabulated

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 4 )